If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+20=50
We move all terms to the left:
2x^2+20-(50)=0
We add all the numbers together, and all the variables
2x^2-30=0
a = 2; b = 0; c = -30;
Δ = b2-4ac
Δ = 02-4·2·(-30)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{15}}{2*2}=\frac{0-4\sqrt{15}}{4} =-\frac{4\sqrt{15}}{4} =-\sqrt{15} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{15}}{2*2}=\frac{0+4\sqrt{15}}{4} =\frac{4\sqrt{15}}{4} =\sqrt{15} $
| 0.4x+2.9=1.51 | | 4x+6=2(x+10) | | 3.9x+0.6(3.4x-0.8=13.182 | | 12=7u-4u | | 4-x=5x-10 | | 2(x/15)x10000000=150 | | 15+4x=5-6x | | 2.4x-0.07(4x-0.3=1.505 | | 8x-5=5x+4x | | 34=3.4h | | (5x+1)^2-16=0 | | 51-9x=10x+13 | | -9=-5.4+z | | 3/8=1/3+z | | -20=4w+8 | | n-3/4=24 | | -5+r/4=3 | | n-5-3n=-11 | | 3(6)^x+2=45 | | -3x-2+5=34 | | 9x⁴+10x³-6x²+15=0 | | 46x+62x-41500=0 | | 1/5=x1/50 | | v/9=8/13 | | b+4=-201/4 | | 2u+3u-24=16 | | 5b-2=0.5(10b-4) | | N^2+12n-8=8 | | (5/8-x)/x=9/4/3/8 | | v+131/6=-5/6 | | x5x-5=45 | | 6/7=c-4/9 |